bijx.Const

class bijx.Const[source]

Bases: Variable

Mark a variable as constant during training.

This variable type explicitly indicates that a parameter should remain fixed during optimization. Useful for freezing parts of models or storing hyperparameters that should not be updated.

Can be used with FrozenFilter to selectively freeze parameters during gradient-based optimization.

Example

>>> bijection = SomeBijection()
>>> bijection.scale = Const(1.0)  # Fix scale parameter
>>> # standard optimizers will not apply gradients to scale
__init__(value, *, is_hijax=None, has_ref=False, is_mutable=True, eager_sharding=None, **metadata)
Parameters:
  • value (A | VariableMetadata[A])

  • is_hijax (bool | None)

  • has_ref (bool)

  • is_mutable (bool)

  • eager_sharding (bool | None)

  • metadata (Any)

Methods

add_axis(axis_index, axis_name)

copy_from(other)

create_value(value)

del_metadata(name)

Delete a metadata entry for the Variable.

from_metadata(value, attributes)

get_metadata([name, default, exclude_required])

Get metadata for the Variable.

get_raw_value()

get_value(*[, index])

has_metadata(name)

Check if the Variable has a metadata entry for the given name.

remove_axis(axis_index, axis_name)

replace([value, _copy_ref])

set_metadata(*args, **kwargs)

Set metadata for the Variable.

set_raw_value(value, *[, _unsafe_bypass_check])

set_value(value, *[, index])

to_state([value, _copy_ref])

update_from_state(variable_state)

Attributes

has_ref

is_hijax

is_mutable

raw_value

required_metadata

shape

type

The type of the variable.

value

var_type