bijx.Sigmoid

class bijx.Sigmoid[source]

Bases: ScalarBijection

Sigmoid normalization transform.

Maps the real line to the unit interval using the logistic sigmoid function.

Type: \([-\infty, \infty] \to [0, 1]\)

Transform: \(\sigma(x) = \frac{1}{1 + e^{-x}}\)

Example

>>> bijection = Sigmoid()
>>> x = jnp.array([-2.0, 0.0, 2.0])
>>> y, log_det = bijection.forward(x, jnp.zeros(3))
__init__(*args, **kwargs)

Methods

forward(x, log_density, **kwargs)

Apply forward transformation with log-density update.

fwd(x, **kwargs)

Apply forward transformation.

invert()

Create an inverted version of this bijection.

log_jac(x, y)

Compute log absolute determinant of the Jacobian.

rev(y, **kwargs)

Apply reverse (inverse) transformation.

reverse(y, log_density, **kwargs)

Apply reverse transformation with log-density update.

log_jac(x, y)[source]

Compute log absolute determinant of the Jacobian.

Parameters:
  • x – Input values where Jacobian is computed.

  • y – Output values corresponding to x (i.e., y = fwd(x)).

  • **kwargs – Additional transformation-specific arguments.

Returns:

Log absolute Jacobian determinant \(\log \abs{f'(x)}\) with same shape as x.

fwd(x, **kwargs)[source]

Apply forward transformation.

Parameters:
  • x – Input values to transform.

  • **kwargs – Additional transformation-specific arguments.

Returns:

Transformed values \(y = f(x)\) with same shape as \(x\).

rev(y, **kwargs)[source]

Apply reverse (inverse) transformation.

Parameters:
  • y – Output values to inverse-transform.

  • **kwargs – Additional transformation-specific arguments.

Returns:

Inverse-transformed values \(x = f^{-1}(y)\) with same shape as \(y\).