bijx.SinhConjugation¶
- class bijx.SinhConjugation[source]¶
Bases:
ScalarBijectionSinh-based bijection using conjugation with arcsinh.
Type: [-∞, ∞] → [-∞, ∞] Transform: arcsinh(exp(mu) * (exp(nu) * sinh((x-loc)/alpha) + beta)) * alpha + loc
- Parameters:
loc (
Union[Variable,Array,ndarray,Sequence[Union[int,Any]]]) – Location parameter (shift)alpha (
Union[Variable,Array,ndarray,Sequence[Union[int,Any]]]) – Scale parameter (must be positive)beta (
Union[Variable,Array,ndarray,Sequence[Union[int,Any]]]) – Offset parameter in sinh spacemu (
Union[Variable,Array,ndarray,Sequence[Union[int,Any]]]) – Log-scale parameter for outer stretchnu (
Union[Variable,Array,ndarray,Sequence[Union[int,Any]]]) – Log-scale parameter for inner stretch
- __init__(loc=(), alpha=(), beta=(), mu=(), nu=(), alpha_transform=<function SinhConjugation.<lambda>>, mu_transform=<PjitFunction of <function arcsinh>>, nu_transform=<PjitFunction of <function arcsinh>>, rngs=None)[source]¶
- Parameters:
loc (Variable | Array | ndarray | Sequence[int | Any])
alpha (Variable | Array | ndarray | Sequence[int | Any])
beta (Variable | Array | ndarray | Sequence[int | Any])
mu (Variable | Array | ndarray | Sequence[int | Any])
nu (Variable | Array | ndarray | Sequence[int | Any])
alpha_transform (Callable | None)
mu_transform (Callable | None)
nu_transform (Callable | None)
Methods
forward(x, log_density, **kwargs)Apply forward transformation with log-density update.
fwd(x, **kwargs)Apply forward transformation.
invert()Create an inverted version of this bijection.
log_jac(x, y)Compute log absolute determinant of the Jacobian.
rev(y, **kwargs)Apply reverse (inverse) transformation.
reverse(y, log_density, **kwargs)Apply reverse transformation with log-density update.
- log_jac(x, y)[source]¶
Compute log absolute determinant of the Jacobian.
- Parameters:
x – Input values where Jacobian is computed.
y – Output values corresponding to x (i.e., y = fwd(x)).
**kwargs – Additional transformation-specific arguments.
- Returns:
Log absolute Jacobian determinant \(\log \abs{f'(x)}\) with same shape as x.